Technology as Moral Proxy
Autonomy and Paternalism by Design

Jason Millar
Department of Philosophy
Queen’s University
Kingston, Canada
jason.millar@queensu.ca

Abstract—In this paper I argue that in cases where technologies provide material answers to moral questions that arise in the use context, they can and should be characterized as moral proxies acting on behalf of a person. Because of this we can accurately characterize the moral link between designers, artefacts and users as a relationship of a particularly moral kind. Moral proxies of the human kind have been a topic of analysis for some time in healthcare and bioethics, making them a good starting point for thinking about moral proxies of the artefactual kind. I draw from bioethics and STS literatures to build an analogy between human moral proxies in healthcare and artefactual moral proxies. I then turn my attention to design ethics considerations. If we accept that artefacts can function as moral proxies it becomes important to recognize that designers can subject users to paternalistic relationships that are ethically problematic. I demonstrate how we can use a proxy analysis as a tool for evaluating technologies. I argue that there are situations in which engineers should use proxy analysis to avoid paternalism by design while simultaneously improving user autonomy.

Keywords—design ethics; engineering ethics; robot ethics; machine ethics; proxy analysis; autonomy; paternalism by design; self-driving cars; driverless cars; internal cardiac defibrillator

I. INTRODUCTION

It is often said that technological artefacts are morally neutral, that they are things bereft of morality save for whatever we might say about those who design or use them. Designers and users, being people, tend to be considered the proper and exclusive focus of our moral attention in the designer-technology-user trio, while technological artefacts, apparently mere tools, cannot contribute anything morally. Technological neutrality, a common term for describing this perspective, gives rise to trite statements like, guns don’t kill people, people kill people. According to technological neutrality whatever morality is pinned on the artefact is done so in error. Instead, one must refer to the people surrounding an artefact to get an accurate read on the moral claims that can be associated with its use. Thus, technological neutrality supports a strict kind of delineation between people and things: people can be the subjects of a moral analysis, things cannot.

Recent work in science and technology studies (STS) and the philosophy of technology challenges this division articulated in technological neutrality. STS demonstrates that there are cases where designers can be seen intentionally embedding moral norms into artefacts to achieve certain ends. Such is the case with grocery cart wheels that lock up when taken too far from a store [1], with bridges designed with low clearances to prevent low-income “bus riders” from accessing upscale beaches in New York state [2], and with cars designed to sound annoying alarms when drivers forget to buckle their seat belts [3]. Such cases demonstrate how artefacts can provide “material answers to moral questions” [4]. A shopping cart with wheels that automatically lock up answers the question How far from the store should a shopper be allowed to take this cart? A low clearance bridge answers the question Who ought to be allowed to visit upscale beaches in upstate New York? A car with seat belt alarms answers the question Should the driver be wearing a seatbelt? In other cases artefacts can unexpectedly give rise to new moral possibilities and questions while eliminating others [4]. For example, the introduction of ultrasound imaging into obstetrics imposes deeply moral questions on pregnant women that did not previously exist: Should I agree to an ultrasound exam?; and What ought I to do if the exam turns up abnormalities? In all of these cases it can be considered reasonable to describe some of the moral work as being done by the artefacts, not just by the people surrounding them [2]-[4]. But even if we maintain a heavy degree of technological neutrality in our analysis, at the very least one can say that the examples above demonstrate that designers are able to both raise and answer moral questions by embedding moral norms into technological artefacts, and that those norms can impact users’ moral lives, often profoundly.

One result of these challenges to technological neutrality, the one that is the focus of this paper, is that by demonstrating how designers embed moral norms into technology and how those norms impact users, we can begin to draw attention to the complex moral relationship that exists between designers, artefacts and users [1]-[4]. Analyzing aspects of the relationship allows us to more clearly articulate how some choices that are made during the design of a technology shape a user’s moral landscape. As such, we can question the appropriateness of certain design choices from within the context of a moral relationship.

In this paper I argue that in cases where technological artefacts provide material answers to moral questions that arise in the use context, they can and should be characterized as moral proxies acting on behalf of a person. Because of this we can accurately characterize the moral link between designers,
arstefacts and users as a relationship of a particularly moral kind. Moral proxies of the human kind have been a topic of analysis for some time in healthcare and bioethics, making them a good starting point for thinking about moral proxies of the artefactual kind. I draw from bioethics and STS literatures to build an analogy between human moral proxies in healthcare and artefactual moral proxies. I then turn my attention to design ethics considerations. If we accept that artefacts can function as moral proxies it becomes important to recognize that designers can subject users to paternalistic relationships that are ethically problematic. I argue that there are situations in which engineers should adopt design practices that avoid paternalism while bolstering informed consent and user autonomy.

II. MORAL PROXIES IN HEALTHCARE

In healthcare, the ideal patient qua decision-maker is the fully rational adult capable of understanding healthcare information as it is presented to her, weighing that information in the context of her personal life, and communicating her preferences and decisions to others. However, patients often find themselves in imperfect healthcare circumstances.

It is often necessary to turn to a moral proxy for decision-making. A moral proxy is a person responsible for making healthcare decisions on behalf of another, which is necessary when a patient is deemed incapable of making, or communicating, his own healthcare decisions. Incapacity of this sort can be age related—a young child cannot make her own decisions regarding care—or can result from a medical condition—a patient might be unconscious, or unresponsive, or generally unable to comprehend the nature of his condition. If a patient is unable either to comprehend the medical information being provided by healthcare professionals, or is unable to communicate his wishes, he cannot give informed consent to medical interventions. A proxy decision-maker is required in such circumstances.

Generally speaking, spouses, family members or next-of-kin are considered the most appropriate moral proxies given their presumed intimate knowledge of the patient’s life and medical preferences [5]. But this was not always the case. The rise of modern medicine saw physicians assuming decision-making authority in healthcare both in ordinary contexts involving capable patients and contexts involving incapacitated patients [5]. For reasons that will be discussed below, that trend has been reversed. Despite physicians’ considerable knowledge and expertise regarding medical options, family members and next-of-kin are once again viewed as the most ethically appropriate proxy decision-makers.

Because healthcare decisions are among the most intimate and private decisions one can make, few people would easily give up the power to make their own healthcare decisions. In practice, turning decision-making authority over to a moral proxy tends to be a last resort only after every effort made to engage the patient in his or her own decision-making has failed.

Not surprisingly, proxy decision-making is not without controversy. In Canada and the US, courts have found that moral proxies must strive to make proxy healthcare decisions in the best interests of the patient [5],[6]. Those are decisions that “[the patient] would choose, if he were in a position to make a sound judgment” autonomously [7]. Thus, the ideal proxy decision-maker makes no decisions at all: the ideal proxy acts merely as a conduit for communicating the precise wishes of the patient given the current circumstances. Typically, however, proxy decision-makers find themselves in a position of partial ignorance with respect to the patient’s wishes, which complicates the decision-making process. Expectations are such that the proxy, most often a family member or next-of-kin, is required to disentangle his own preferences from those of the ailing loved one, a difficult requirement to be sure [8]. It is equally if not more difficult to determine, as an outside observer, whether or not the proxy has met this requirement. In Re S.D., the case quoted above, parents acting as proxy to their severely disabled seven year old boy refused consent for a routine surgery to unblock a shunt that drained spinal fluid from the brain. In their estimation their son was enduring a life of suffering that the surgery would only act to prolong. Family and Child Service petitioned the courts on behalf of the boy, resulting in the court case. Their dispute was over whether or not the parents were able to separate their own interests sufficiently from that of the child’s, casting doubt on whether or not their decision was in the best interests of the patient. The parents argued that it was, while the Supreme Court of British Columbia found that it was not. So go the controversies surrounding moral proxies.

Pointing out that proxy decision-making is difficult and controversial is not meant to suggest that there is no good way of doing proxy decision-making or of resolving controversies over what is in a patient’s best interests. In the context of this argument the controversial nature of moral proxies is meant to underscore the moral complexities associated with delegating proxy decision-making powers to someone other than the patient. Though not without its own controversies [9], having the competent patient make her own healthcare decisions is broadly accepted by healthcare professionals, patients and the courts, as morally preferable to having another decide on her behalf.

III. TECHNOLOGY AS MORAL PROXY

Consider the following scenario²: Jane is at high risk of ventricular arrhythmias, a condition that causes her to unexpectedly experience life-threatening abnormal cardiac rhythms. She found this out a decade ago after having been admitted via ambulance to the emergency room, suffering a heart attack. Jane’s cardiologist told her that she was lucky to be alive, and that the symptoms could recur unexpectedly at any time. In order to increase her chances of surviving similar future cardiac events her cardiologist recommended that Jane be fitted with an Internal Cardiac Defibrillator (ICD). She was told that the ICD is a small implantable device consisting of a

² This scenario is an adaptation based on first-person accounts of living with ICDs. Though Jane is a fictional character, her experiences as described are consistent with those accounts [10].
power source, electrical leads that are fixed to the heart, and a
small processor that monitors the heartbeat to deliver electrical
stimuli (shocks) whenever a dangerously abnormal rhythm is
detected. The ICD is a small version of the larger defibrillator
that the paramedics had used to save Jane’s life. Being
otherwise healthy at the time, she agreed to the surgery.

Three uneventful years after her ICD implantation, Jane
recalls being in a meeting at work and suddenly feeling
lightheaded. She recalls experiencing a sudden “jolt” in her
chest, which according to her was the rough equivalent of
being kicked in the chest by a horse. The first jolt was followed
in quick succession by several others, though she cannot recall
how many, each one as traumatic as the first. After several of
these shocks her co-workers called an ambulance. Paramedics
arrived to find Jane conscious but in shock. In the hospital she
was told that her ICD had saved her life after delivering a total
of seven series of shocks to her heart. “The ICD performed
perfectly,” her doctors told her, “it saved your life.”

It is worthwhile taking a moment to examine the
tremendous work that is accomplished by such a small artefact
as the ICD. Without the ICD the efforts of several people, and
some luck, are required to prevent disaster. Jane could only
hope to be in the company of others during a cardiac episode,
for starters someone would need to call the paramedics to come
help her. The paramedics, assuming Jane is near enough that
they are able to arrive in time, must assess the situation,
perhaps without the benefit of knowledge of her preexisting
heart condition. (Do those who called in the emergency happen
to be privy to Jane’s heart condition? Is Jane conscious and
alert enough to tell the paramedics of her condition when they
arrive?) Assuming the paramedics are able to assess her
condition accurately they must then prep both Jane and the
defibrillator, and only then can they deliver shocks to Jane’s
heart. If all goes well, after considerable time, coordination
and effort the human actors surrounding Jane have just successfully
performed the medical interventions the ICD is capable of
performing on its own almost instantaneously. Thus, Jane’s
ICD all but eliminates the need for humans in the critical path
to the medical intervention. It continuously monitors her heart,
detects abnormal cardiac rhythms, and delivers potentially life
saving shocks before a single human bystander has the chance
to come to Jane’s assistance.

Indeed, the ICD is a powerful little artefact! ICDs are
capable of accomplishing the work of several humans, a fact
that Bruno Latour refers to as delegation [3]. Designers
delegate the tasks of continuous monitoring, medical
assessment and intervention to the ICD. Not only does the ICD
perform those functions but also, unlike its human counterparts
who are error prone, it performs them with the accuracy and
consistency expected of a computer. ICDs also mediate our
relationship with the physical world, in this case Jane’s
relationship with time and space [4]. With her ICD working
diligently in the background, Jane is free to travel farther from
medical centres with a certain confidence that in an emergency
the time and space between her and medical experts will have
less impact on her chances of survival; the ICD promotes
Jane’s freedom and independence by expanding her
geographical safety zones.

In addition to the work that is delegated to the ICD, and the
mediating role it plays, answers to deeply moral questions can
be delegated to it too [4]. An answer to that life and death
question that was asked of Jane prior to her implantation—
Would you like to have potentially life-saving electrical shocks
administered in the future event that your heart goes into an
abnormal rhythm?—is implicit in the presence of an activated
ICD. Yes! Shock the heart and sustain Jane’s life! The ICD is
continuously poised to answer that deeply moral question by
the mere fact that it is in Jane, actively monitoring her heart,
ready to deliver potentially life-saving electrical shocks at the
first sign of an abnormal rhythm. Her ICD works diligently in
the background, instantaneously answering an important
healthcare question on her behalf when called upon to act.

Here we see that the ICD can be cast as moral proxy acting
on behalf of Jane. In the absence of an ICD, an ideal moral
proxy would be required to provide an answer to that same life
and death question in an emergency: Would Jane agree to have
potentially life-saving electrical shocks administered given that
her heart has gone into an abnormal rhythm? An activated
ICD provides an answer to that question.

To further illustrate how an artefact can function as moral
proxy consider Jane’s current situation. Just under a year ago
she was diagnosed with inoperable cancer. Her initial
prognosis suggested she had four to six months to live, and her
health has deteriorated to the point that her medical team have
discussed palliative measures with her and her family
members. As a part of those conversations Jane was asked
whether she would want the medical team to attempt to
resuscitate her in the event that her heart stopped. Recalling
the intense pain she suffered when her ICD fired years ago, and
recognizing the gravity of her current medical condition, she
decided that no resuscitation efforts should be made, only that
she be kept comfortable.

Of course, her “do not resuscitate” (DNR) preference, a
deeply moral end-of-life decision, would be ineffective if the
medical team failed to alert all of the medical staff by way of
adding the important DNR note to Jane’s medical chart. In that
case, healthcare staff that were not a part of the DNR
conversation would have no way of knowing what Jane’s
preferences were, and would likely assume proxy decision-
making powers with her and her family
members. Indeed, the DNR
preferences would be equally ineffective if no one alerted the
ICD to her preferences by deactivating it. In that case, quite
unaware of the information on her chart, in the event that
Jane’s heart went into an abnormal rhythm the ICD would
assume proxy decision-making power and deliver its pre-
programmed series of up to nine painful shocks. With the
moral decision to (or not to) attempt cardiopulmonary
resuscitation delegated to it, an ICD functions as an efficient
moral proxy the moment abnormal heart rhythms are detected,
that is, the moment the question whether or not to attempt
resuscitation must be answered.

As it stands Jane is waiting for the medical staff to contact
the ICD manufacturer to assist with the deactivation (hers is an
older model that the hospital is unequipped to deactivate). She
is told the deactivation could take several days to accomplish.
Delegating to the ICD her new end-of-life preferences involves
highly specialized equipment and some official paperwork. Jane hopes that her last moments in life will not involve several painful reminders of the powerful little device within her. As a moral proxy, her ICD is proving to be somewhat uncooperative.

IV. AUTONOMY AND PATERNALISM BY DESIGN

As was briefly mentioned above, patients have not always been considered the most appropriate authority for making decisions about their own healthcare [5],[11],[12]. Prior to the latter part of the twentieth century physicians commonly made deeply personal healthcare decisions on behalf of the patient, a practice now termed paternalism. True to its name, the paternalistic healthcare model saw physicians and other health care professionals assuming proxy decision-making power on behalf of patients, who were told what was the “best” healthcare decision given their situation. Indeed, physicians often intervened in a patient’s care in direct opposition to the patient’s expressed preferences [11].

Paternalism stands in contrast to today’s accepted standards of practice. Today, healthcare professionals are seen as having an ethical responsibility to provide an appropriate set of healthcare options for the patient to choose from, and to reasonably counsel patients on the benefits and risks of each option so that the patient can make a free and informed, in other words an autonomous, decision regarding her own care [9]. To be sure, healthcare professionals often have in mind one option that stands out as most appropriate, but it is ultimately the patient’s responsibility to select healthcare preferences from among the various options presented to him. Intended to respect a patient’s autonomy, this model of free and informed consent (informed consent hereinafter) has become the ethical standard by which healthcare decision-making is judged. For consent to be informed the patient must first be capable of understanding the implications that the various healthcare options have in the context of his life and of communicating a preference, the consent must be given voluntarily, that is free from undue pressure or coercion, the decision must be based on having been given a (reasonably) full set of options to choose from, and consent must be ongoing meaning it can change at any time [13]. Paternalistic relationships are problematic in large part because they act to undermine each of the conditions of informed consent, seriously undermining patient autonomy.

Where does technology fit into the pictures of paternalism and autonomy outlined above? We have already seen how an ICD functions as moral proxy: healthcare decisions are delegated via the artefact’s design and settings. Activated, the decision to attempt resuscitation, and the resuscitation attempt are delegated the ICD. Once deactivated the ICD both declines resuscitation attempts and respects a DNR decision by not attempting resuscitation. Delegation happens both at the level of the decision and of the intervention. At both levels some technological correlate is required: to delegate the decision a setting (switch) is required to put the artefact into a particular mode of operation, while delegation of the resuscitation attempt requires more complex functionality (involving electrical leads, algorithms, power sources and the like) to carry out the operations.

From a moral perspective the settings designed into a technology can be made to do most of the heavy lifting. When technology functions as a moral proxy, the settings that define its mode of operation can reify particular moral decisions; the settings provide the proxy answers to the moral question raised in a use context. As such, an artefact’s settings can put it in a mode of operation that corresponds to a patient’s preferences, the corollary being that an artefact’s settings can also put it in a mode of operation that confounds a patient’s preferences.

Returning to Jane’s stubborn ICD, we can say that while it is in a mode of operation Jane has not explicitly endorsed (whether or not it corresponds to or confounds Jane’s end-of-life preferences) it is acting paternalistically. We can say this because “paternalism” is meant to describe a particular kind of relationship, and in the case of ICDs there exists just that kind of relationship between a patient and her ICD when the ICD is set without a patient’s explicit endorsement. The ICD is capable of intervening in Jane’s life and providing material answers to moral questions: it functions as a powerful moral proxy. So long as the ICD is functioning in a mode of operation Jane explicitly endorses we can say that it is acting in Jane’s best interests, that the proxy relationship between Jane and her ICD is one that respects Jane’s autonomy. When the ICD is functioning without Jane’s explicit consent, say through its readiness and willingness to attempt resuscitation once Jane has declined such interventions, it acts very much like a healthcare professional poised to assume proxy decision-making authority and impose upon Jane its own answer to what is in Jane’s best interests, despite her expressed interests to the contrary. In this latter case the relationship between Jane and her ICD can accurately be described as paternalistic.

Thus, there exists a complex moral relationship between designers, artefacts and users. Designers can embed into artefacts moral norms that offer material answers to moral questions. An activated ICD attempts resuscitation, making it both a technology that promotes resuscitation as a valuable means of extending life, and a technology that answers, Resuscitate! Yes, shock the heart! By designing a switch into the ICD (a setting for selecting between modes of operation), designers make the ICD a technology that acknowledges and problematizes the instability of end-of-life decision-making in healthcare. From a purely technical perspective designers need not have included the switch (it would require further research to determine if designers considered the switch a practical or ethical requirement, or both). From a moral perspective it is essential to provide a switch. However, the presence of a switch raises an important question about who gets to “set” it and how—who ultimately gets to tell the proxy which way to decide. By designing the ICD in such a way that a patient does not have direct access to the switch, designers embedded another moral norm into the artefact; one that suggests a patient ought not to have direct access to the switch. Each design decision regarding the switch—its very presence, who gets access to it—changes the nature of the moral relationship between the artefact and the user.

Though informed consent practices and requirements differ slightly between Canada and the US, they are similar enough for the purposes of this argument.
Further analysis of this last design feature—the presence and nature of an ICD’s on/off setting—helps to clarify some of the ethical aspects of design that engineers should acknowledge in their relationship with artefacts and users. Using the proxy model as a framework for analysis, which incorporates requirements of informed consent—that it be voluntary, informed and ongoing—underscores how artefacts can function as deeply moral participants in our lives, as proxies capable of both respecting and usurping our autonomy in surprising ways. A switch, as it turns out, is much more than an efficient way of turning things on and off. Were there no switch present, the ICD would presumably function in an “always on” state, as a moral proxy respecting the patient’s autonomy only insofar as his healthcare preferences corresponded to the ICD’s mode of operation at any point in time, and insofar as the patient’s consent to be implanted was free and informed. However, without the ability to change the ICD’s setting it would be difficult for the ICD to satisfy the ethical requirement for ongoing consent since the “always on” state of the ICD would eliminate the possibility of changing one’s mind. Without the switch it would be difficult to determine in an ongoing manner whose decision is delegated to the ICD: on whose behalf would the proxy currently be acting, the designer’s or the patient’s? As I have suggested, moral proxies ought always to be acting on behalf of the patient. If we discovered that the patient’s end-of-life preferences had changed since implantation, we would have no way of alerting the proxy of its new moral directives. The relationship between the patient and the ICD would suddenly shift from one respecting patient autonomy, to a paternalistic one, which is ethically problematic.

Add the switch and suddenly you gain traction on some of the problems associated with paternalistic technological moral proxies. First, you can delegate different healthcare preferences to the proxy, enabling the possibility of ongoing consent. You also then have a mechanism for delegating explicit healthcare preferences to the artefact. More than the mere presence of the artefact indicating a preference, the setting indicates which preference is the current selection among whatever options are available (resuscitation or no resuscitation in the case of the ICD). Third, the presence of a switch forces one to answer the question, _whom ought to have access to it?_ Whenever the relationship between designers, artefacts and patients is one in which moral proxies are instantiated in the use context via the artefact, the relationship ought to be such that the patient’s autonomy is reasonably maximized. Artefacts should not be designed to function in a mode that would subject a patient to a problematic paternalistic relationship. It follows that patients ought to have reasonable access to the settings that put their technologies into modes of operation that provide material answers to moral questions.

How can we apply these three points to a rudimentary design analysis of ICDs? We can say that above and beyond any practical requirements it might also satisfy, the presence of a switch allowing the ICD to be either active or inactive is an ethical design requirement. An ability to switch between those two modes of operation is necessary for respecting end-of-life preferences in an ongoing manner, thus for respecting patient autonomy. We can also say that patients ought to have more direct control over the settings of their medical devices in order to avoid, whenever reasonably possible, situations where technology is functioning in a mode other than one corresponding to the patient’s (user’s) moral preferences. Placing undue burdens on the patient (user) that might encourage her to modify settings, or might prevent or delay the changes from being communicated to the proxy (artefact/device), threaten to subject her to a paternalistic relationship with respect to her device.

Handing over more direct control of device settings to users carries an additional benefit, in that it requires user consent to be more properly informed. Whenever a device functions in a proxy decision-making mode of operation, the user surrenders some moral authority to the device. If a user does so unsuspectingly, say because the device was set in a default mode of operation not fully explained to him, then the informed consent requirements of the proxy relationship might not have been satisfied. This would not be particularly problematic in many cases, such as those in which users are comfortable having their devices operate according to the default settings. But it is particularly problematic in cases where the user, if properly informed, would have set the device otherwise. It is always somewhat problematic, given that a basic requirement of all autonomous decisions is that they be informed. Thus, if engineers design devices such that they require certain modes of operation to be explicitly activated by the user, the chances of satisfying the moral requirement of fully informed consent increase in the use context. Users will need to be educated as to which design features have ethical implications in the use context, and will need to make explicit choices about them.

In the case of the ICD or other medical technologies one might object to the notion of handing over too much control of device settings to the patient on grounds of patient safety. This might be especially so in cases where liability concerns are at issue. Jane’s situation (being unable to directly deactivate her ICD) might be the result of detailed discussions in consultation with lawyers, ethicists, healthcare professionals, patients and other relevant parties, intended to strike an appropriate balance between safety, security, patients’ autonomy (the ease with which they are able to change the settings on their ICDs), and making sure they don’t do so accidentally, hastily, while incapacitated, or worse yet unknowingly.

It can also be argued, however, that objections based primarily on patient safety are overly paternalistic. The patient safety objection runs the risk of assuming incorrectly that patients are prone to accidents, hasty judgments, incapacitation of some sort, or other failures that can only be avoided by placing an expert in between the patient, whose life is at stake, and the switch the throwing of which would place the patient at risk against better judgment. After all, paternalism in healthcare stems in part from the notion that the patient is less capable than some other person of making good decisions with respect to her own care, and so must be protected. To be sure, devices must be designed to safeguard against accidental harms. Whether or not devices ought to be designed to safeguard against the deliberate, rational, competent actions of those on behalf of who the devices are properly acting is another matter altogether. On the balance, placing gatekeepers
in between the patient and certain settings on his device could be as ethically problematic as placing the same gatekeepers between a patient and his human moral proxy.

V. BEYOND MEDICAL DEVICES

My argument has focused so far on a single medical technology: the ICD. However, we find proxy relationships instantiated by nonmedical technologies. Whenever a technology, medical or otherwise, instantiates a moral proxy relationship in the use context, we can evaluate its design using a proxy analysis.

Self-driving cars (SDCs) provide an excellent example for thinking about how non-medical technologies can function as moral proxies. Perhaps the best-known example of an SDC is the one under development at Google [14]. Google’s SDC uses a series of sensors, digital maps, databases, and software to solve the extremely complex problem of driving [15]. To date, Google’s SDCs have logged hundreds of thousands of kilometers driving autonomously in regular traffic, with only the occasional need for human intervention [15]. In 2011 the state of Nevada was the first to pass legislation authorizing the licensing of SDCs for the state’s roads, a law that went into effect early in 2012 [16]. Florida and California followed close on Nevada’s heels, a move described as “turning today’s science fiction into tomorrow’s reality” [17]. According to Google, their SDCs are safe: “there hasn’t been a single accident under computer control” [17]. Many of the major auto manufacturers are developing SDCs, including Volkswagen, Audi, General Motors, and Daimler-Benz, while almost every auto manufacturer is implementing semi-autonomous features such as parallel parking and collision avoidance systems. It is expected that SDCs will be on the market within the next decade, while some predict the SDC will dominate the roads by 2040 [18],[19].

Consider the following hypothetical situation involving an SDC: Your car is speeding along a bridge at one hundred kilometers per hour when a bicycle ridden by a mother, and pulling her innocent child passenger along in a trailer, errantly swerves into your path. Should your car swerve, possibly killing its owner (you) to save the mother and child, or keep going straight, likely killing the mother and child? If the decision must be made in milliseconds, the computer will have to make the call [20],[21].

Similar to the situation involving Jane’s end-of-life decisions and the state of Jane’s ICD (should it remain active or be deactivated?), this ethical dilemma has no objective answer. But the proxy analysis framework applied previously to the ICD does help us to shed some light on questions surrounding this driverless car scenario. Regardless of which path the SDC takes, we can consider the SDC a moral proxy acting on behalf of whoever set it to take that path. If, for example, the engineers at Google programmed the car to keep going straight, in other words to always protect the owner’s life in situations where the owner’s vehicle is not at fault for the situation, then we can say that the SDC is acting as moral proxy on behalf of Google. But this might turn out to be morally problematic. It might be the case that the owner of the car would feel morally obliged to risk his own life in such situations, especially ones involving innocent children. Such an owner, if his SDC kept going straight, would find himself subject to a paternalistic relationship: a moral proxy acting on behalf of Google would confound his moral preferences. We can consider the owner the morally appropriate decision-maker in this driving context since his life, not the manufacturer’s, is directly at risk and he is not at fault. It follows, as in the healthcare context, that his is the autonomous decision that ought to be represented by the proxy, not Google’s.

From a design perspective this suggests that SDC owners ought to be morally responsible for the choice of setting the SDC to act one way or the other in situations like the one described. Designers are not the appropriate decision-makers in these scenarios, and so should reasonably strive to build options into SDCs allowing the choice to be left to the user. As is the case in medical contexts, SDC users ought to be informed of the potential moral consequences of their technology choices. Users should then be asked to make autonomous decisions regarding certain cases where it is reasonably foreseeable that the technology will provide material answers to moral questions, in this case risking either the owner’s life or the lives of others in particular use contexts. Making that decision on behalf of the user risks subjecting him to a paternalistic relationship in which his autonomy is unreasonably fettered.

VI. CONCLUSIONS

STS provides numerous examples of how technological devices can provide material answers to moral questions in use contexts. When a device reifies a moral decision it instantiates a moral proxy relationship—a role much discussed in bioethics—acting on behalf of whoever set it to operate in that particular mode. There are, however, established ethical norms surrounding proxy decision-making in healthcare and bioethics. We ought to apply those norms to technological moral proxies. Users should have their autonomy reasonably maximized when their devices function as moral proxies—the devices ought to act explicitly on their behalf. Designers can maximize user autonomy in this sense by designing devices such that users are better informed about the proxy implications of the device, and such that users make explicit choices regarding the settings that reify moral decisions.

Placing requirements on designers may seem misplaced. Why should these new requirements be placed on their shoulders? The short answer is to point to the fact that designers—engineers for the most part—are already designing norms into their devices as the ICD example suggests. Whatever decision an engineer makes about the ICD’s switch carries moral implications. ICDs are but one example of how engineers are inescapably embedding norms into technology. Design is a social and ethically loaded activity, through and through [2]-[4].

What engineers should want to avoid is accidental paternalism in design. That is, given that engineers are inescapably linked to the settings and features they embed in their devices, it makes sense that they would want to both understand the moral dimensions of those links, and design them explicitly using some guiding framework. Accidentally
creating devices that subject users to paternalistic relationships is undesirable.

Moral proxies and informed consent practices provide a conceptual framework that can be applied to the design process to help avoid accidental paternalism. Though such a framework does not promise to help predict or prevent all morally problematic design decisions with proxy-like implications (what process could accomplish such a lofty goal?), recognizing the applicability of the proxy analysis framework to design is a step toward better design.

There is, of course, a practical gap in my argument. One should ask, how should we actually apply these concepts in the design process? My goal in this paper has been to lay the theoretical underpinnings for a practical approach to performing a proxy analysis. Therefore, I do not provide a detailed practical approach in this paper. I will, however, briefly sketch a possible way forward. Incorporating a proxy analysis into design activities could involve a version of what Verbeek terms “mediation analysis”. His proposal sees the theoretical underpinnings for a practical approach to performing a proxy analysis.

At times, technology presents us with ethical challenges that threaten established design practices. As we (engineers and philosophers) have done when faced with other ethical implications of technology—environmental, social, health—we can confront the recognition that technology can instantiate moral proxy relationships head on and accept our role in the designer-technology-user relationship with its full moral weight. That proxy relationships seem to burden designers with added responsibility should not be cause to abandon the design of all technologies that instantiate them, nor does it allow us to cry foul against those who point to them as problems in need of a solution. A middle ground must be sought that acknowledges proxy relationships for what they are, while seeking a design solution that moves us forward. In this paper, I have argued that there is a problem in need of a design solution: technology can function as moral proxy, and can sometimes subject users to problematic paternalistic relationships. I have also sketched a path forward: a proxy analysis can be applied in design to help bolster user autonomy where it should be bolstered, and to avoid subjecting users to unjustifiable paternalism by design.

We have given up on paternalism as a principle in healthcare and bioethics and have instead adopted autonomy as a replacement—the doctors still have work and patients appear better off. We should reject paternalism by design while promoting autonomy by design for the same good reasons.

ACKNOWLEDGMENT

I wish to thank Sergio Sismondo and Ian Kerr for their many intellectual interactions over the years that have left me a better philosopher, professor, engineer and person.

REFERENCES

978-1-4799-4992-2/14/$31.00 ©2014 IEEE